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Figure 1: Stages of our pipeline: The input tetrahedral mesh (a) and applied loading conditions yield the stress tensor field (b). Our defor-
mation aligns the tensor field to an orthogonal basis (c) on which the hexahedral lattice (d) is constructed. With the inverse deformation we
extract a stress aligned hexahedral mesh (e). This hexahedral lattice is materialized with beam (f) and wall (g) micro-structures, reducing
the overall amount of material consumed by the object while maintaining an optimized mechanical performance under load.

Abstract
Maintaining the maximum stiffness of components with as little material as possible is an overarching objective in computa-
tional design and engineering. It is well-established that in stiffness-optimal designs, material is aligned with orthogonal prin-
cipal stress directions [Ped89]. In the limit of material volume, this alignment forms micro-structures resembling quads or hexa-
hedra. Achieving a globally consistent layout of such orthogonal micro-structures presents a significant challenge, particularly
in three-dimensional settings. In this paper, we propose a novel geometric algorithm for compiling stress-aligned hexahedral
lattice structures. Our method involves deforming an input mesh under load to align the resulting stress field along an orthogo-
nal basis. The deformed object is filled with a hexahedral grid, and the deformation is reverted to recover the original shape. The
resulting stress-aligned mesh is used as basis for a final hollowing procedure, generating a volume-reduced stiff infill composed
of hexahedral micro-structures. We perform quantitative comparisons with structural optimization and hexahedral meshing
approaches and demonstrate the superior mechanical performance of our designs with finite element simulation experiments.

CCS Concepts
• Computing methodologies → Shape analysis; Volumetric models; Mesh geometry models;

1. Introduction

Lightweight design plays a key role in a sustainable future and is a
critical task in a variety of industries, including aerospace, automo-
tive, and architecture. Lightweight designs which also maximize
mechanical performance are often approached with topology opti-

mization. Topology optimization is an established structural design
method for optimizing the distribution of a given material budget
within a specified domain under a given set of mechanical boundary
conditions. It discretizes the design domain with a voxel grid and
iteratively performs gradient-based material deposition to optimize
for the stiffest layout. Especially in 2D scenarios this process has
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been extensively studied [BS13]. The iterative optimization pro-
cess involves intensive computation, especially for 3D structures
as shown in Figure 2a, thus demanding for dedicated GPU solvers
[WDW16] or high-performance computing clusters [AAL15].

Lattice infills, also referred to as multi-scale approaches [WSG21],
have shown a computationally less expensive alternative for cre-
ating high-resolution designs in 3D. It is well-established that in
stiffness-optimal designs, material is aligned with orthogonal prin-
cipal stress directions [Ped89]. In the limit of material volume, this
alignment forms micro-structures resembling quads or hexahedra.

(a) (b) (c) (d)
Wu et al. Arora et al. Wu et al. Ours
[WDW16] [AJL∗19] [WWG21]

Figure 2: A topology optimization result (a) compared to geometric
structural optimization methods, guided by the induced stress field.
All designs use only a fraction of the fully solid object’s volume.

Furthermore, as shown in recent work [SOG∗22, JOB∗24] and con-
firmed by our experiments (Table 1), wall-structures can signifi-
cantly enhance the mechanical performance of 3D micro-structure
designs. Achieving such wall-structures with a geometric approach
necessitates a mesh comprising finite cells with regular vertices,
making a pure hexahedral mesh a practical choice. While alterna-
tives like tetrahedral or prismatic elements could be considered, the
orthogonal nature of the principal stress directions in 3D favors the
use of hexahedra, which also have orthogonal edges. This structure
allows for easier alignment with the stress field and simplifies the
embedding of subdivision micro-structures in each cell. Addition-
ally, using non-hexahedral cells would complicate the subdivision
process, as micro-structure geometries must be defined for each cell
type, where general polyhedra introduce challenges due to irregular
vertex valences. Although relaxing the constraint on pure hexahe-
dral meshes is possible, it would increase the complexity of the
overall procedure without offering clear benefits.

For given boundary shape and conditions, the challenge is to com-
pile a globally consistent hex-lattice that follows the spatially vary-
ing stress directions. This is difficult due to the existence of de-
generate points at which principal stress directions exchange their
type and stress trajectories of the same type can cross. The stress
field can be smoothed to filter out such regions [AJL∗19], pro-
ducing structures with a high degree of regularity yet significantly
lower mechanical performance than topology optimization (see
Figure 2b). Frame-aligned hex-dominant meshing [GPW∗17] with
the principal stress directions as guiding frame [WWG21] faces
the same challenge. It cannot produce meaningful structures with-
out significant distortions of the stress field (see Figure 2c) and,
in general, the resulting structures are graphs which do not obey
the composition rules of meshes. While in 2D, the trajectory-based
approach [WWW22, WWW23] naturally forms a quad-dominant

lattice, this does not translate to 3D such that intersecting stress tra-
jectories would form a hex-lattice. In 3D space, there is no guaran-
tee that such a stress line intersects even one other trajectory while
transcending the object.

Therefore, we propose a technique that generates a 3D stress field-
guided hex-lattice. As quads are the preferred 2D element shape
for single load conditions (meaning multiple loads but acting at
the same time), our structural design analogously comprises solely
hexahedral elements with mutually orthogonal edges and faces that
aim to align with the 3D stress tensor field (Figure 1f & 1g).

Our method builds upon the core concept of transforming an input
tetrahedral mesh such that its inherent stress field aligns with an or-
thogonal basis. Therefore, we borrow concepts from cubification
and object stylization methods [LJ19, LJ21, LZS∗21, ZGL∗23].
Our approach extends the deformation concept from triangulated
manifold surfaces to tetrahedral meshes, aligning orthogonal stress
tensors instead of surface normals. In the deformed state the result-
ing shape is discretized with a regular hexahedral grid. The inverse
transformation retrieves a stress-aligned hexahedral mesh such that
at each vertex its edges are aligned with the orthogonal stress field.
Eventually, hollow micro-structures replace the hexahedral cells,
reducing the overall amount of material consumed by the object,
while maintaining as much stiffness as possible. We evaluate our
results by quantitative comparisons with related works, and can
demonstrate superior mechanical performance of our designs with
finite element simulation experiments.

2. Related Work

Despite some concepts in hexahedral meshing being related to ours,
the primary goals we pursue are significantly different. Our focus
on optimizing structural stiffness may sometimes compromise ele-
ment quality and input fidelity in favor of achieving optimal stress
field alignment within the object’s interior. Consequently, our re-
lated work section does not aim to recapitulate the already thor-
oughly explored field of hexahedral meshing [PCS∗22]. Instead, in
the following we collect and summarize work that has inspired or
is closely related to our pursued goals.

Field Alignment A core principle in our approach is aligning the
hexahedral mesh to a frame field. This is a complex and challeng-
ing problem because some field singularities cannot be resolved us-
ing hexahedra. In the concept proposed by Nieser et al. [NRP11],
a coarse meta mesh is manually constructed, with singularities
placed at favorable positions to ensure the extracted field is suit-
able for generating a pure hexahedral mesh. However, the authors
acknowledge that poorly placed singularities can lead to drastic de-
formations of the mesh. Since minimizing deformation is crucial
for maintaining accurate stress field alignment in our approach, we
opted for a method approaching singularities with implicit smooth-
ing in the field deformation step. Similarly, the approach of Gao et
al. [GJTP17] heavily smooths the generated frame field, resulting
in a hex-dominant mesh that may include arbitrarily large poly-
hedra. At-Most-Hexa meshes [BTL22] also align to a frame field
based on the input hull but by default may include elements topo-
logically smaller than hexahedra, such as prisms or tetrahedra. Our
proposed method constructs a pure hexahedral mesh aligned with a
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stress tensor field. Singularities in this stress field are not based on
the object’s shape but arise from the forces acting within the pre-
ceded simulation. Instead of smoothing, the deformation optimizes
for the best compromises between extensive alignment of the hex-
lattice to the stress field and accuracy in low-rank singularities.

Cubic Maps Constructing constrained shape deformations in
form of PolyCube mappings [THCM04] is a core concept used
in many hexahedral meshing frameworks. However, precomputing
PolyCube topology continues to pose a notable challenge. Progress
in this area has been driven by advancements in labeling meth-
ods [GSZ11], exemplified by the utilization of graph cut segmenta-
tion techniques [LVS∗13] and their advancements [DPM∗22].

Recent trends in the field also adopt a similar cubical deforma-
tion and its inversion, as used in our work. Nevertheless, the intri-
cate aspect of the PolyCube decomposition typically entails man-
ual intervention, involving numerous smoothing steps and user-
driven refinements [LZS∗21] to reconstruct certain details. More-
over, this process lacks orientation invariance and results depend
on the object’s initial orientation. Similarly, approaches such as
HexBox [ZGL∗23] rely on surface projection techniques applied
to a cubified representation of the mesh, also necessitating manual
construction of the HexBox through user input.

In this context, the principle of cubification holds significant im-
portance and is often tweaked and tailored for specific application
requirements. In our approach we utilize the cubic stylization prin-
ciple [LJ19, LJ21], employing an As-Rigid-As-Possible (ARAP)
deformation [IMH05, FSA23] with specific extensions to the ini-
tial core structure. Notably, we utilize only spokes within the rims-
and-spokes configuration, as recently discussed in revised ARAP
approaches [FSA23] and extend the alignment to full orthogonal
matrices rather than only surface normals.

Multi-scale Structures Basic topology optimization approaches
tend to produce strong single-truss based structures carrying the
majority of the load with thinner structures supporting the hull.
However, compared to that, the micro-structure approach or porous
materials have the advantage to be much more resilient to single
defects [WAWS18]. Therefore, many recent approaches focus on
lattice infill, i.e., multi-scale, structures as the prevalent technique
for converting the optimized density field into a binary material
layout [WSG21]. There are also concepts that contrast the classi-
cal goal of improving stiffness, by utilizing micro-structured meta
materials designed to enhance flexibility [SBR∗15] and deforma-
tion [TTZ∗20] in manufactured parts. The approach by Wang et
al. [WWW22] for 2D designs proposes porous layouts based on
mesh-like structures. However, in 3D domains, these structures do
not necessarily conform to conventional meshes. Instead, they form
graphs with irregular topology [WWG21], yet suitable to be pro-
duced with contemporary manufacturing technologies. Theoretical
findings, on the other hand, advocate for the incorporation of wall-
like structures in 3D designs in addition to solidified beams. To
achieve such structures, a conforming hexahedral mesh is required.

3. Background

Compliance, i.e., the reciprocal of stiffness, is a well-established
measure in structural design to express how much a structure de-

forms under a given load. Thus, minimizing compliance results in
a structure with increased stiffness. Compliance is expressed as

c =
1
2

UT KU (1)

where K is the structural stiffness matrix. The external loads are
expressed in the force vector F , and the displacement vector U is
determined by solving the equilibrium

KU = F. (2)

In classical topology optimization, the compliance is minimized
under a constraint on the amount of consumed material (volume).
As compliance is not scale-invariant, the performance of the opti-
mized design is always expressed as c

c0
in relation to the compli-

ance c0 of the fully solid object. Furthermore, the volume of the
optimized structure aims to be a fraction of the initial object and is
thus given as α = v

v0
, where v0 is the volume of the solid object.

3.1. Stress Field

We assume a given tetrahedral mesh (with vertices V and tetrahe-
dra T ) and specify loading conditions as sets of vertices that re-
main fixed in certain regions and others where forces are applied.
In this work we assume a single-load scenario, which may fea-
ture multiple forces but acting at the same time. Standard finite
element methods yield deformation vectors at each vertex, which
are interpolated across elements to compute the Cauchy stress ten-
sors [GM20]. These stress tensors are then projected back to each
vertex vi ∈V . Orthogonal principal stress tensors Ξi follow as their
eigenbases, respectively. The eigenvalues of the Cauchy stress ten-
sors further yield information on the magnitude of stress in certain
regions of the object and serve as basis to derive the scalar von
Mises stress norm σv. Our use of the von Mises stress is twofold:
We use it as an indicator of the edge thickness of the hexahedral
design (Figure 8), and to prioritize the alignment of the design in
regions with important mechanical properties (λi in Equation (4)).

Aligned Structures The theoretical concept introduced by
Michell in 1904 [Mic04], commonly summarized as Michell
Truss, serves as a cornerstone for designing stiffness-optimized
lightweight structures. Michell demonstrated that an optimally stiff
design under load experiences no shearing stress, leaving only ten-
sion and compression stresses. This motivates the widely estab-
lished concept of micro-structures aligning with the principal stress
directions, where shear stress is zero. The rationale behind this is
that most materials perform significantly better under tensile and
compressive stresses than under shear stresses.

4. Method

The core concept underlying many hexahedral meshing procedures
is the computation of a robust mapping between a given frame
field and a hexahedral domain subdivision. In classical hexahedral
meshing, the goal is to achieve a final hexahedral layout which
aligns with the domain boundaries and comprises elements satis-
fying shape and size constraints. The frame field needs to be se-
lected with care, since it may contain local constellations which
simply cannot be resolved with hexahedra. Our approach deviates
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from classical hexahedral meshing and strives for the best mapping
under a global alignment objective, with the frame field being the
principal stress directions in a 3D tensor field. Our proposed solu-
tion to achieve such a mapping covers the following principle steps:

• Firstly, a deformation aligns the stress field to an orthogonal ba-
sis by transforming an input tetrahedral mesh (Section 4.1).

• In the deformed state, hex-lattice structures are introduced and
deformed back, using the inverse transformation (Section 4.2).

• Finally, elements in the stress-aligned hexahedral mesh are re-
placed by hollow micro-structures with adjustable fill rate to
achieve a selected volume budget (Section 4.3).

4.1. Constrained Field Deformation

We introduce an optimization approach that computes a deforma-
tion of a tetrahedral mesh, such that the individual per vertex stress
tensors Ξi align to a common orthogonal basis. We consider the
set V of all vertices vi of the input mesh (ṽi ∈ Ṽ in the deformed
state, respectively) andN (i) are sets of locally adjacent neighbors.
Notably in these local neighborhoods we actually only consider
directions to direct neighbors of vertex vi (spokes only instead of
the full spokes-and-rims structure), providing a more flexible ba-
sis for the deformation optimization. The system stiffness matrix
W ∈ R|V |×|V | comprises standard 3D-cotan weights wi j [Cra19],
encoding the relation of vertices i and j connected with edge ei j,
derived from the tetrahedral mesh. Further denote Ri ∈ R3×3 indi-
vidual rotation matrices per vertex. Local neighborhood geometry
is denoted with di j = v j−vi at rest and d̃i j = ṽ j− ṽi in the deformed
state, respectively. υi encodes the Voronoi cell volume of vertex vi,
and λi allows to weight the importance of individual vertices. The
energy to be minimized is then expressed as

minimize
Ṽ , {Ri}

∑
vi∈V

∑
v j∈N (i)

wi j

2

∥∥∥Ridi j− d̃i j

∥∥∥
2

F
+λiυi |||RiΞi|||1 . (3)

Similar to the Cubic Stylization approach by Liu et al. [LJ19], the
first part of the objective function acts as an As-Rigid-As-Possible
(ARAP) constraint. The use of the L1 norm (with |||X|||1 =∑

∥∥xi
∥∥

1)
in the second term encourages axis alignment because the L1 norm
sums the absolute values of the components of a vector across all
dimensions. Minimizing this sum pushes the vector to align with
one of the basis axes. For a unit vector, the L1 norm reaches its
minimum value of 1 when the vector is aligned with one of these
axes, since only one component will be non-zero in this case.

Figure 3: The stress field (+) on the left is formed for the given
loading conditions (| ←). In the center, the object is deformed,
aligning the stress field to an orthogonal basis. In this state, the
hex-lattice (□) is inserted and transformed back (right).

Thus, the per-vertex optimization step can be formally expressed as

R′
i = arg min

Ri∈R3×3

1
2

∥∥RiDi− D̃i
∥∥2

Wi
+λiυi |||RiΞi|||1 (4)

where Di and D̃i (∈ R|N (i)|×3) stack all local spokes-edge vectors
(not normalized) row-wise at rest and deformed state, respectively.
The |N (i)|×|N (i)| sized matrix Wi with 3D cotan-weights is em-
ployed in Equation (4) with ||X||2Y = Tr(XYXT ).

Optimization is performed with the Alternating Direction Method
of Multipliers (ADMM) [BPC∗11], where we use the common ini-
tialization parameters [LJ19]. A decisive difference in our applica-
tion lies in the orthogonal Procrustes [GD04] formulation: Instead
of considering only the normals of surface vertices, we expand the
formulation with the principal stress tensors Ξi of the tetrahedral
mesh vertices as formulated in Equation (5).

Rk+1
i = arg max

Ri∈R3×3
Tr(RiMi),with

Mi =
[
DT

i ΞT
i
][Wi

Pk

][
D̃i

Rk
i Ξi−Uk

i

] (5)

Further, we have Pi,Ui ∈R3×3, where Pi is a diagonal matrix com-
prising three penalty values ρk

x,ρ
k
y,ρ

k
z and Uk

i stacks scaled dual
vectors to the aligned stress tensor. In each ADMM iteration, the
optimal local rotation matrices are iteratively updated from the sin-
gular value decomposition Mi = UiΣiVT

i as Rk+1
i = ViUT

i (with
signs flipped such that det(Rk+1

i ) > 0). This local iteration deter-
mines the best alignment for each stress tensor Ξi independently,
thus facilitating parallelized execution. A reduction to two dimen-
sions, as exemplified in Figure 3, follows analogously.

In the global step, a single linear system is solved [SA07] for the
deformation with the best local alignments. Unless explicitly speci-
fied, the vertices are not bound to any constraints beyond the neigh-
borhood geometry encoded in the global cotan-matrix W.

4.2. Introducing Hexahedral Structures

Within the deformed structure, we generate a hex-lattice that is
oriented on the same basis as the aligned stress tensors. The hex-
lattice with vertices ũi is constructed within the deformed shape of
the tetrahedral mesh. A hexahedral cell is included, only if all of
its eight vertices lie within a tetrahedron t ∈ T of the input mesh
(however, not necessarily all in the same tetrahedron). This guaran-
tees that all hexahedra are entirely included in the inputs outer hull.

ṽ0ṽ1

ṽ2

ũi v0

v1

v2

ui

Figure 4: 2D example of Equation (6) with the mapping of ũi, en-
closed in the deformed element with vertices ṽ0, ṽ1, ṽ2 ∈ Ṽt , back to
the original shape with vertices v0,v1,v2 ∈Vt resulting in ui.
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MSJ: −0.908 MSJ: −0.009 MSJ: 0.260

Loading Conditions Progressive Grid Hull Projection Conservative Grid Padding & Projection + Smoothing
Figure 5: Progressive grids and their projection better preserve individual element alignments in the hull layer but can cause inverted
vertices if projected into a concavity (circled). Affected elements cannot be untangled by smoothing. Our conservative strategy with padding
offers better results by default as only a single edge (2D) or a quad (3D) per element is projected and can be further improved by smoothing.

Transforming this hex-lattice back to the undeformed object’s pose
is realized by applying the mapping

ui = bt(ũi)
[
Vt − Ṽt

]
. (6)

Vt and Ṽt ∈ R4×3 denote the four vertices at rest and deformed
state of the tetrahedron t, which includes the created vertex ũi of
the hexahedral mesh. The corresponding barycentric coordinates of
ũi in t are denoted by bt(ũi). These are analogously used to inter-
polate other field related quantities at the hexahedral vertices, such
as the stress tensors σi from the tetrahedral vertices. Insertion of
the hex-lattice and its back-deformation are included on the right
in Figure 3 and shown in detail in Figure 4.

Hull Layer Strategy The grid structure employed within the de-
formed object does not yet yield a conforming mapping to the ob-
ject’s outer faces. By design, the grid does align with object bound-
ary features per default but only follows the induced stress field.
Nevertheless, improved input fidelity can be approached with the
two strategies presented in Figure 5. The progressive grid approach
also features elements partly inside the input object, thus overlap-
ping the boundary. A simple normal-projection of the grid hull does
not introduce new elements and preserves alignment well. How-
ever, as pointed out in Figure 5 (circled), this may cause inverted
elements when vertices are projected into a concavity. Our con-
servative grid strategy incorporates only elements fully enclosed
in the input hull. The resulting gap between the introduced struc-
ture and the object hull is filled with a padding layer (Figure 6c
to 6d). Outer open quads of the hexahedral structure are projected
along their normal directions onto the tetetrahedral mesh’s trian-
gular hull. This spans up a padding layer between the inner hex-
structure and the projected quads, again consisting solely of hex
elements. When vertices of the aligned grid are projected onto the
hull, the distance they travel is smaller than the spacing in the grid

itself. Because the field is considered smooth and does not change
significantly over such small proximities, in general, the resulting
structures on the hull are also well aligned to the field. However,
this excludes edges directly connecting the projected hull with the
inner structure as these edges align with the projection directions,
i.e., the normal directions. Further, in certain constellations, the
projection may lead to self-intersecting projected quads. Thus, we
employ a smoothing step on the new layer of hexahedra (Figure 6d
to 6e), untangling degenerate hull-quads. Whereas feature align-
ment and accurate hull approximation are crucial for classic hex-
ahedral meshing approaches, this step is more of a cosmetic fea-
ture for our approach where the internal field alignment matters
most. Therefore, the padding could either be omitted or replaced
by a more advanced solution as the scaffolding and deformation
technique by Gao et al. [GSP19] or post-processed with dedicated
hex-optimization techniques [LSVT15].

If the chosen resolution of the hex-lattice discretization is insuffi-
cient to capture certain details of the input geometry, two kinds of
artifacts may arise: Fine details, thinner than a hexahedron, can-
not be reconstructed and result in missing geometry. In other rare
cases, the padding layer spanned up by the projection yields a non-
untangleable mesh. This occurs if the quads of the open hull do not
form a manifold mesh. This can be prevented by either increasing
the resolution or performing a smoothing operation on an interme-
diate voxel representation. As shown in Figure 6c, a structure is
represented with a 3D voxel mask, indicating if a hex-cell is used
or not. The mask is filtered using 3× 3× 3 sized binary kernels,
such that only cell configurations remain where adjacent hex-cells
have to share a quad-face. In a configuration where cells only share
an edge or single vertex, the hex-cell with the least number of di-
rect neighboring cells is removed. This usually affects no more than
0.1 % of hex-cells from the most outer layer.

(a) (b) (c) (d) (e) (f)

Figure 6: The stress field in (a) emerges from loading conditions keeping the left face of the cube fixed and applying a tangential downwards
force on the right. In (b) the tetrahedral mesh is deformed and aligns the stress field to the common basis, visualized by the inserted cubical
frame. Further, the hex-lattice is inserted (c), the hull padded (d), smoothed (e) and transformed back to the original shape (f).
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4.3. Micro-Structures

To reduce the volume of a structure, i.e., the weight of a computed
layout, the individual mesh cells are replaced by hollowed micro-
structures. Therefore, as illustrated in Figure 7, the edges of each
cell are extruded inwards. The micro-hexahedra spanned by the ex-
trusion consume only a fraction of the volume of the original ele-
ments. The exact fraction is controlled via the parameter τ. Since
all newly created vertices of a micro-structure are interpolations of
their original edge, face or cell vertices, a conforming structure can
be generated, e.g., two adjacent micro-structures share the same
four interpolated vertices from the quad that separated their origi-
nal hex-cells. For detailed interpolation matrices see Appendix A.
The reduction in volume is relative to each cell, with a global pa-
rameter τ analogously translating to the volume of the full structure.

The analog to the common de-homogenization in 2D is to extrude
only the edges of each element, forming solid beams as visualized
in the center of Figure 7. With 3D objects, however, the design is
not limited to beams alone but may also feature wall-like structures
by extruding the faces of each cell as well. Therefore, the beam-
structure is simply augmented with six more hexahedra as shown
on the right of Figure 7, creating a hollow cube.

solid

τ

beams + walls

Figure 7: To reduce volume, hexahedra (left) are replaced by hol-
lowed edge-inward-extruded micro-structures (center, right). A vol-
ume fraction α is met by adjusting the extrusion parameter τ.

Equation (7) defines the extrusion parameter τ as a function of the
desired volume fraction α= v

v0
, where v is the volume of the micro-

structures and v0 is the volume of the solid object. We provide sep-
arate equations for beam-only (b) and walled (w) micro-structures,
denoted by the respective subscripts. While parameter τ directly
controls the thickness of beams and walls in the micro-structures,
the volume fraction α is the more intuitive design parameter. Con-
verting from τ to α is straightforward, as detailed in Appendix B,
but going the other way (expressing τ in terms of a given α) is more
challenging. Specifically, for the beam micro-structure, the rela-
tionship between τb and α results in a casus irreducibilis, meaning
there is no real-valued inverse function for arbitrary α. As a result,
the expression for τb is an approximation, though it is exact when
α = 1

2 . More details on this can be found in Appendix B.

τb(α) =
cos−1(1−2α)

2π
τw(α) =

1− 3
√

1−α
2

(7)

The insertion of micro-structures requires a conforming mesh with
finite cells and, in particular, vertices with an in-cell valence of
3, e.g., hexahedra, triangular prisms and tetrahedra. General hex-
dominant meshes, e.g., by Gao et al. [GJTP17], may feature arbi-
trary polyhedra with vertices of higher valence, thus are not suit-
able in general. At-Most-Hexa meshes [BTL22] solely consist of
elements which are topologically smaller than hexahedra but are

also encoded as such. Therefore, we can generate micro-structures
for At-Most-Hexa meshes, but the featured collapsed edges cause
the system matrix to become impractical for simulation. In gen-
eral, however, any pure tetrahedral or hexahedral structure, fea-
turing edges of predominantly similar lengths, is suitable for this
micro-structure concept.

Targeted Thickness To approach bone-like porous structures
[WAWS18], the global volume constraint is replaced by a local
volume constraint to avoid accumulation of material. In topology
optimization, this enforces that material is first distributed along
the mechanically relevant stress directions, resulting in beam- and
wall-like structures in 2D and 3D, respectively. In our context, we
propose τ⋆ as extrusion parameter, determined individually for each
vertex of the aligned hex-lattice structure. As link to the global
stress field, we found the scalar von Mises stress σv a suitable
heuristic. The stress tensors at the hexahedral vertices are inter-
polated according to Equation 6. Thus, a recomputation of the
stress simulation on the new structure is not required. Further is
the von Mises stress normalized by the global maximum value σ̂v
and squared to emphasize high-stress regions. However, individual
extrusion parameters at each vertex yield non-uniform cell volume
fractions, thus a global volume fraction α is no longer given.

τ⋆ =

((
σv

σ̂v

)2

· (1−|p|)+max(p,0)

)
· (τ⊤− τ⊥)+ τ⊥ (8)

As a countermeasure, Equation (8) formulates vertex-individual pa-
rameters τ⋆ based on a global parameter p ∈ [−1,1]. To meet a
specified global α, all τ⋆ are p-tuned using standard numerical opti-
mization. Further is τ⋆ limited by the natural maximum τ⊤ = 1

2 for
a fully solid cell. Our chosen non-zero lower boundary τ⊥ corre-
sponds to a minimum of α = 5% for an individual cell [WWW23].
Figure 8 illustrates a 2D example of the quad-mesh, extracted in
Figure 3, with uniform τb cells on the left and individually ex-
truded τ⋆b cells on the right. The effect of targeted thickness re-
sults in improved mechanical performance, expressed as the rela-
tive compliance c

c0
, which further decreases with τ⋆. For reference,

the same evaluation on the initial unoptimized triangle mesh in-
put gives c

c0
= 3.316 for τb and c

c0
= 1.646 for τ⋆b, respectively.

Equation (8) also offers a degree of freedom for using σv: In this
example the normalization was replaced by an inverse cumulative
distribution function, yielding an equalized thickness distribution.

c
c0

= 2.912

&

τb

→

σv

c
c0

= 1.412

τ⋆b

Figure 8: 2D micro-structures with uniform τ on the left, τ⋆ on the
right and α = 1

2 for both. The σv stress field (middle, scaled for
visualization) results from the same forces as shown in Figure 3.

4.4. Extensions

In the following, we discuss modifications of the proposed method
that allow for improving and fine-tuning the results.

© 2024 The Authors.
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Optimal Alignment Many hexahedral meshing approaches that
rely on a polycube decomposition assume a suitable orientation of
the input [LZS∗21, ZGL∗23]. With our method the primary ob-
jective is the alignment of the hex-lattice to the stress field in the
object’s interior rather than surface features. Therefore, we can de-
termine an optimal orientation automatically as the eigenbasis of
a weighted average of all stress tensors σi. This option was used
by default in all included results. Optionally a specific orientation
could be defined manually. Notably, if the optimal orientation is not
given or automatically determined, the first few global optimization
steps rotate the object to align with a suitable orientation.

Considering Surface Normals Especially in regions of contact,
i.e., input mesh vertices where the simulated forces are applied or
which are kept fix, results can be improved if the hex-lattice also
aligns to the outer hull. Let vertices v j ∈ V⊢ be the set of fixed or
moved vertices. Then, the stress tensor Ξ j is rotated (by minimal
Euler rotation) such that its most normal-aligned axis actually be-
comes parallel to the surface normal n j. Further, we can enforce
stronger alignment in these points by selectively increasing the λ j.
This has a similar effect as cubification, i.e., regions of contact are
flattened uniformly and become orthogonal to one of the coordi-
nate axes. Thus, when introducing the hex-lattice (Section 4.2), the
hexahedra closest to the hull tend to form a single-level layer rather
than staircases approximating a rounded hull surface. However, this
additional alignment only makes sense if the forces act orthogo-
nally on the surface, but not in a tangential configuration, e.g., as
on the cube example in Figure 6.

Adjusting Axis Alignment The λi parameter in the energy min-
imization Equation (3) allows one to weight the local alignment
against the global ARAP-deformation, where higher values en-
force stronger alignment. We have experimented with individual
weights per vertex, i.e., scaled by the largest eigenvector from the
local stress tensor computation. This allows for prioritizing re-
gions with higher stress to have better alignment on the cost of
regions with less stress, i.e., where sub-optimal alignment is less
crucial. Furthermore, we have made a similar observations as Li et
al. [LZS∗21], which is that ramping up the cubeness over multiple
iterations leads to overall better results.

5. Discussion and Evaluation

We evaluate the mechanical performance and stress-alignment of
the structures generated with our approach in comparison to sim-
ilar results of structural design and comparable hexahedral mesh-
ing methods. Shown comparisons are based on results available on
HexaLab [BTP∗19] and were selected as representative subsets of
objects generated with alternative methods. The included numbers
and plots are the results of FEM simulations using standard param-
eters (Young’s Modulus of 1000 and Poisson ratio of 0.3). Since
the inputs are tetrahedral meshes and both our hex-lattice and the
micro-structure results are pure hexahedral meshes, any common
FEM library can be utilized for numerical stress simulation. The
same forces are applied to the fully solid object and the different
optimized lattice designs using micro-structures, to measure and
compare the mechanical performance under load but with signifi-
cantly reduced amounts of material.

Figure 9: Objects listed in Table 1 as a (solid) hexahedral mesh on
the left, corresponding beam and wall micro-structure designs with
α = 1

2 in the center and on the right, respectively. Color encodes
deformation under load, normalized for visualization.

5.1. Mechanical Performance

Table 1 presents an evaluation of the compliance computed for
different objects and hexahedral structures generated with different
methods. This allows for comparing the performance of beam-
and wall-structures introduced in Section 4.3, both with volume

© 2024 The Authors.
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Hu et al. [HSW∗20] (tet) Gao et al. [GMD∗15] (hex) Livesu et al. [LAPS17] (hex) Ours (hex)

Figure 10: Results correspond to the numbers listed in Table 1 of the femur and meshes created by
different methods. Each version is shown with beam (left) and wall (right) micro-structures in a cut-
open view. Coloring visualizes the induced deformation under the given loading condition. The femur
is fixed at the bottom and a force vector is applied at the top. Our results marked with a ⋆ employ the
non-uniform τ⋆ extrusion to generate individually scaled micro-structures per cell. The locally varying
thickness of extruded beams and walls in the τ⋆ version is noticeable in the lower parts of the femur.

Ours⋆ (hex)

fractions of α = 1
2 . All listed numbers are given as c

c0
, where

c0 is the compliance of the fully solid object, i.e., the lower the
better. We tried to level the resolution of the compared struc-
tures as good as possible. An example is illustrated in Figure 10.

method beam wall

cu
be

Hu et al. [HSW∗20] 3.070992 2.880481
Axis Aligned Hexahedra 3.486986 2.751497

Ours 2.998545 2.531853
Ours⋆ 2.584732 2.185485

fe
m

ur

Hu et al. [HSW∗20] 3.082209 2.921756
Gao et al. [GMD∗15] 2.933029 2.478329

Livesu et al. [LAPS17] 2.927899 2.446718
Ours 2.747245 2.435161
Ours⋆ 1.995508 1.624553

fe
rt

ili
ty

Hu et al. [HSW∗20] 3.302256 3.105790
Gao et al. [GMD∗15] 3.052227 2.491892

Livesu et al. [LAPS17] 3.197407 2.607759
Ours 2.920798 2.458964
Ours⋆ 2.522228 2.043973

ki
tte

n

Hu et al. [HSW∗20] 3.241617 3.050779
Gao et al. [GMD∗15] 3.313399 2.662459
Livesu et al. [LPP∗20] 3.074764 2.581898

Ours 2.977281 2.497409
Ours⋆ 2.246125 1.804384

sp
ot

Hu et al. [HSW∗20] 3.223385 3.032241
Zoccheddu et al. [ZGL∗23] 3.054186 2.484063

Ours 2.846452 2.426191
Ours⋆ 2.487546 2.011845

ve
nu

s

Hu et al. [HSW∗20] 3.327974 2.995528
Gao et al. [GSP19] 2.942068 2.488273

Dumery et al. [DPM∗22] 2.912585 2.463419
Ours 2.766663 2.363639
Ours⋆ 2.345045 1.895938

Table 1: We evaluate the mechanical performance of different hex-
ahedral meshes under identical loading conditions with a volume
fraction of α = 1

2 using beam and wall micro-structures. Numbers
on the right give the compliance increase c

c0
with reduced volume

compared to the fully solid object, i.e., the lower the better.

For each object in Table 1, the first row includes the TetWild
[HSW∗20] mesh that served as basis for our approach and also
acts as a baseline in this comparison. Unsurprisingly the tetrahedral
mesh performance is usually the weakest, as its internal structure is
quite disturbed and not aligned to any meaningful direction. To
highlight the effectiveness of wall micro-structures, the compari-
son also features other pure hexahedral meshes generated with an
automatic block decomposition algorithm [LPP∗20], state-of-the-
art polycube mappings [DPM∗22] and semi-manual approaches re-
quiring user-designed volumetric functions [GMD∗15], skeletons
for tubular shapes [LAPS17] or specified blocks [ZGL∗23] to guide
the decomposition. These methods produce feature aligned meshes
with high input fidelity and hexahedra of objectively high quality.
We apply our micro-structure concept on these hexahedral meshes
and directly use the results (also hexahedra) in the simulation. As
our mesh is tailored to a specific loading scenario, for a reasonable
comparison we choose applied forces to be at least in favor of the
competing structures or generate them using identical frame fields.
As the results demonstrate, in all scenarios our approach generates
meshes that surpass the meshes generated with alternative meth-
ods in terms of mechanical performance. The observation that bet-
ter alignment leads to stiffer structures is consistent with findings
from classical topology optimization. Further, the measured num-
bers confirm that wall-like structures generally outperform beam-
only structures, while consuming the same volume fraction. Table 1
also features our results with non-uniform extrusion rates τ⋆, indi-
cated with a ⋆. This reduces the resulting compliance factor signif-
icantly, often by a factor of around two, and in some cases even
lower. As shown in Figure 9 with the fertility and kitten model,
also complex object topology is no limitation with our method.
The only requirement for achieving a complete structural design
that reproduces thin features is a sufficiently high resolution of the
hex-lattice. Lower resolutions may result in defects, such as miss-
ing geometry. This issue can be partially mitigated by using the
progressive grid method, as shown in Figure 5, with an additional
padding layer. However, this approach may generate some inverted
elements due to the projection, necessitating more untangling op-
erations. The kitten object is an example where this technique was
used to include the tail despite the coarse resolution.

© 2024 The Authors.
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Hu et al. Arora et al. Wu et al. Ours
(tetrahedra) [HSW∗20] (edge-graph) [AJL∗19] (edge-graph) [WWG21] (hexahedra)

Figure 11: Comparing lattice alignments: The histograms on the left plot the angular deviation of vertex edges to the local stress tensor, the
average deviation over all edges is listed in the inset. Corresponding lattice structures are shown on the right as full and cut-open versions,
respectively. The color-coded structures visualize the averaged edge deviation for individual vertices.

In Table 2, we compare the mechanical performance of infill struc-
tures generated with the structural optimization methods by Arora
et al. [AJL∗19] and Wu et al. [WWG21]. Notably both gen-
erate field-aligned edge-only designs, not supporting our micro-
structure concept. To enable a fair comparison, we apply Arora
et al.’s technique, solidifying the edge-graphs by extruding cylin-
ders along the edges and computing a robust boolean manifold
surface for the extraction of a tetrahedral mesh (see Figure 2).
The radius of the cylinders is chosen to meet the desired volume
fraction α = 1

2 . We apply the same technique to solidify our lat-
tice structures for comparison in Table 2. This approach mitigates

method truss

cu
be

Arora et al. [AJL∗19] 3.758369
Wu et al. [WWG21] 3.405656

Ours 3.298168

fe
m

ur

Arora et al. [AJL∗19] 2.512450
Wu et al. [WWG21] 3.188068

Ours 2.509744

fe
rt

ili
ty Arora et al. [AJL∗19] 2.716619

Wu et al. [WWG21] 2.637801
Ours 2.383448

ki
tte

n Arora et al. [AJL∗19] 2.627741
Wu et al. [WWG21] 2.692648

Ours 2.521266

sp
ot

Arora et al. [AJL∗19] 3.872281
Wu et al. [WWG21] 3.267195

Ours 2.668108

ve
nu

s Arora et al. [AJL∗19] 2.431033
Wu et al. [WWG21] 3.546859

Ours 2.389367

Table 2: Comparing relative compliance c
c0

of field-aligned lattices

using solidified trusses as shown in Figure 2 with α = 1
2 . The same

parameters and boundary conditions as in Table 1 apply.

the bias introduced by using differently tessellated FEM structures
[BPM∗95, SHD∗18, SHG∗22], i.e., tetrahedralized trusses versus
our hexahedral micro-structure beams. The compliance values also
correlate with the observations in Figure 11, showing that Wu et
al.’s lattices are generally well-aligned but feature arbitrary inter-
connecting diagonal edges. These consume material from the lim-
ited global budget, but do not significantly contribute to the overall
stiffness and weaken the more structurally relevant edges.

5.2. Field Alignment

The concepts introduced by Arora et al. [AJL∗19] and Wu et al.
[WWG21] represent approaches for generating stress-aligned lat-
tice structures, tailored towards sustainable manufacturing designs.
Both approaches generate graph structures comprised of vertices
that are connected via stress tensor aligned edges. While this results
in closed triangular and quadrangular cells in 2D, the correspond-
ing 3D structure does not generally comprise finite cells or faces. In
Figure 11, we also compare our results and their aligned lattices in
terms of adherence to the initial tensor field. Therefore, we interpret
the input tetrahedral mesh and our hexahedral mesh also as edge
graphs and compare their individual alignment to local field orien-
tations. We measure the angle of an edge to the closest axis of its lo-
cal principal stress tensor, and average at each vertex the measures
for all its connected edges. In the tetrahedral mesh, edges don’t fol-
low a particular direction. This also reflects in the overall highest
deviations in Figure 11. The average over all vertices in a structure
is inset in the histograms, respectively. Averages of around 20° de-
viation in results of the aligned methods are unexpectedly high but
can be explained as follows: The results by Arora et al. adhere more
strictly to the initial grid, resulting in less alignment with the tensor
field. In the conforming edge structure of Wu et al., many edges
adhere to the local stress directions, but vertices are also connected
by additional non-aligned diagonals, contributing to larger devia-
tions on average. In our results, the highest per-vertex deviations

© 2024 The Authors.
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Gao et al. [GJTP17]Gao et al. [GJTP17] Arora et al. [AJL∗19]Arora et al. [AJL∗19] OursOurs

Figure 12: A rectangular bar is attached on the left with two forces applied on a single vertex each. As highlighted, the resulting stress field
features a singularity where and denote the primary and secondary principle stress directions (in close proximity), respectively.

are found at hull vertices. Since the hull padding layer results from
projections of inner vertices, local orientations are generally well
preserved. However, if the projection creates inverted elements that
require untangling, the smoothing process may move vertices and
locally disturb the alignment. Therefore, when considering only in-
ner vertices in our structures, the deviation averages are 18.0° for
the femur and 16.2° for the venus. However, intersections of the
histogram curves indicate that overall about 80 % of our vertices
have better aligned edges compared to the conforming lattices of
Wu et al. This slight advantage of our hex-lattice is also reflected
in the global averages over all vertices.

Singularities Figure 12 illustrates loading conditions on a rectan-
gular bar that provoke a singularity in the stress field. The method
by Gao et al. [GJTP17] applies local smoothing to the frame field
and extracts a quad- or hex-dominant mesh. This relaxed constraint
on the mesh topology allows for more flexibility and better align-
ment of individual element edges to the field. However, this intro-
duces many irregular vertices and cells of arbitrary degree. Arora
et al. [AJL∗19] employ global smoothing on the frame field before
extracting the edge-graph. This approach tends to push problem-

Figure 13: Cut-open visualizations of a buddha statue reveal hex-
ahedral mesh variations under different loading scenarios. Orange
boxes mark fixed regions, arrows indicate the applied forces.

Figure 14: Static torsional forces are applied on a jet engine
bracket [WBM21], shown on the left. The inside view on the right
reveals the wavy structures that emerge in the resulting hex-lattice.

atic regions towards the object’s boundary, which may result in ar-
tifacts and locally increased resolution in the extracted graph. Our
proposed field deformation has a similar effect on the stress field
as global smoothing, as singularities are approached by bending
the field around them. Nevertheless, our extracted mesh has better
alignment close to the boundary (e.g., upper and lower right cor-
ners of the bar), has no degenerate faces, guarantees inner vertices
to be regular, and generally consists of more evenly sized cells.

Varying Loading Conditions In contrast to common hexahedral
meshing options which optimize the hexahedral structure for best
feature alignment and highest input fidelity, our method is tailored
for the characteristics of a specific stress field. With different load
scenarios, the stress field obtained from simulating on the tetrahe-
dral mesh will be different. Figure 13 illustrates cut-open exam-
ples a buddha statue with varying fixed regions or forces applied.
All three examples were generated with identical parameters, only
varying the mesh resolution slightly to yield approximately the
same number of hexahedral elements. Another significant differ-
ence to common hexahedral meshing methods becomes apparent in
Figure 14: The jet engine bracket [WBM21] is faced with a static
torsional force acting bidirectional on its handles. As the lattice fol-
lows the emerging stress field, resulting internal structures are wavy
and curved. Untangling may introduce smoothing artifacts and lim-
ited resolution can lead to beveling of sharp features.

5.3. Element Quality

The Minimum Scaled Jacobian (MSJ) is a measure of skewedness
that is often used to express the quality of a hexahedral mesh and
its suitability for robust computation. Although our hex-lattices are
not primarily designed for this purpose, we can evaluate the MSJ to
highlight the quality of our mesh and the individual cells. Addition-
ally, to ensure applicability of our micro-structures, there should be
no inverted elements (MSJ < 0). Plots in Figure 16 show the MSJ
of our extracted hex-lattice and the resulting micro-structures. The
inverse deformation applied on the inserted perfect hex-lattice only
marginally decreases the quality of individual elements. Only the
hull padding (Section 4.2) introduces elements of lower quality due
to the projection. The targeted untangling of degenerate elements
only assures to fix inverted elements but stops once it is accom-
plished. As shown in Figure 15, the SJ distribution in our meshes is
dominated by the highest quality elements in the object’s core and
features only a few poor elements in the most-outer layer. As the
structure is a pure hexahedral mesh, common optimization tech-
niques [LSVT15] trivially apply. More smoothing or optimization
could eventually elevate the element quality but would ultimately
also introduce more deviation from the initial stress field.

© 2024 The Authors.
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Figure 15: Hexahedral mesh quality. The Scaled Jacobian measure (per vertex) from 0 (poor) to 1 (optimal) is color coded. Due to the hull
projection and untangling, elements of the most-outer layer are usually more deformed, i.e., have lower quality.

By construction, each hex-cell corner is also part of one of its
micro-hexahedra. Thus, the MSJ of the overall structure does not
change by replacing cells with micro-structures. However, intro-
duced micro-vertices are determined as interpolations of the orig-
inal cell vertices. This comes as a smoothing effect, noticeable in
the histograms (Figure 16) as the MSJ distribution shifts upwards.
This indicates more micro-hexahedra of higher quality in relation
to the overall amount. The histograms also show the effect of non-
uniform τ⋆ on the micro-hexahedra: Even in a perfectly rectangular
hexahedron, varying τ⋆ values on each vertex will create slightly
skewed and differently scaled micro-hexahedra. This can be seen
in the diagrams with the rightmost bars (accounting for the highest
quality elements) of τ⋆ falling slightly behind the τ bars.

cube femur

fertility kitten

spot venus

Figure 16: Histograms (0.1 bin width) plot the element quality,
measured as Minimum Scaled Jacobian (log-scale, ranging from
0 (poor) to 1 (optimal)). The three bars include the extracted hex-
lattice , our wall micro-structures using a uniform τ and τ⋆ .

5.4. Performance and Implementation

As described in Section 4.1, the stress field deformation is com-
puted with a standard energy optimization approach using a local
and global step per iteration. In all experiments, the λ parame-
ter was linearly scaled from 0 to 2 over the first 100 iterations,

whereas the full optimization usually converges within 200 itera-
tions. The computation- and memory-complexity of the procedure
scales roughly linearly with the size of the input. Local steps are
performed per vertex, while the global step involves highly sparse
matrices. The time per iteration also decreases during the optimiza-
tion, as with increasing alignment fewer local ADMM iterations are
required. For 10k tetrahedra our single-core Python implementa-
tion performs around 10 iterations per second, whereas for larger
inputs with 800k tetrahedra one iteration (local + global step) may
take up to 3 seconds. Extracting the aligned hex-lattice, padding the
hull layer and introducing the micro-structures usually takes only
a few seconds. However, once the most time-consuming deforma-
tion is computed, it can be reused to extract multiple hex-lattice
structures, e.g., with different resolutions, wall or beam configura-
tions and adapted τ⋆ values. An implementation of our method is
available at https://github.com/dbukenberger/HexahedralLattice.

5.5. Future Improvements

While our method demonstrates improved alignment with the stress
field compared to certain alternatives, there are still cases where de-
viations from the field can be significant. Especially field singular-
ities, which are not explicitly accounted for in the mesh structure,
may introduce local distortions, as seen in Figure 12. Addressing
these issues in future work could further enhance the performance
and robustness of our approach.

The optimization to find the optimal deformation for aligning the
stress field is constrained by a cotan-based ARAP energy. While
this rigidity facilitates natural isometric deformations with consis-
tent object proportions, the contrary could be a promising approach
as well. I.e., with conformal deformations [BDS∗12] (in this con-
text meaning angle-preservation), altered proportions would lead to
a varying resolution in the extracted lattice.

Our micro-structure concept is based on the single parameter τ
to reduce the volume within each cell equally, thus uniformly for
the whole object. This setting is easy to control, does not require
any further optimization and is already sufficient to demonstrate
the promising mechanical performance of the computed struc-
tural designs. However, our proposed non-uniformly scaled micro-
structures using τ⋆ allow for more stiffness in stress-critical regions
of the object at the expense of weaker non-critical regions. While
this simple heuristic already improves the overall mechanical per-
formance drastically, it is based on the von Mises stress of the fully
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solid structure. Updating τ⋆ in an iterative feedback loop with a
compliance optimization objective could improve the performance
further, but at the intensive computational costs of reevaluating K
and U in each iteration. Thus, investigating more advanced meth-
ods for balancing the volume distribution within the object for a
given α could be a rewarding direction for further research.

While our micro-structures, by design, recreate the initial shape and
orientation of the cells, relaxing this relation introduces another de-
gree of freedom: Anisotropically scaled micro-structure geometry
or individual alignment to their local stress tensors could further
improve the object’s stiffness.

In addition to stress-aligned hexahedral meshing, which we focus
on in this paper, the optimization of spatially varying and direction-
dependent thickness or porosity is a separate and important task in
structural optimization. We leave the integration of our meshing
method into such a design optimization routine as future work.

6. Conclusion

We introduce a novel method for constructing stress field-aligned
lattice structures, yielding pure hexahedral meshes wherein the in-
ternal edge structures consider the major stress directions under
given loading conditions. Our approach optimizes a deformation
of the input object and its associated stress field to align with an or-
thogonal basis. The deformed object is filled with hexahedra and
eventually transformed back to yield stress-aligned hex-lattices.
The conforming nature of our result mesh with finite cells enables
volume (= material) reduction via cell-inward edge-extrusion fa-
cilitating wall structures. Utilization of such micro-structures is a
capability lacking in competing 3D approaches generating edge
graphs. Our method achieves comparable alignment and mechani-
cal performance as state-of-the-art 3D methods in beam-structure
design. The loading conditions in our simulations were deliber-
ately set in favor of the competing mesh structures, creating stress
fields roughly following their inherent layout. Nevertheless, our ap-
proach surpasses common meshing methods by producing explic-
itly tailored stress-aligned structures. Scenarios where our method
really shines are configurations like the cube (Figure 6f) or the jet
engine bracket (Figure 14), where common hexahedral meshing
methods would produce completely different structures, i.e., per-
fectly axis- or feature edge aligned hex-cells. Through mechanical
performance comparisons with state-of-the-art hexahedral mesh-
ing approaches, we have demonstrated the superiority of produced
wall-like structures, affirming improved mechanical properties of
the stress-aligned hexahedral infills. Employing the stress-aligned
material distribution with non-uniform extrusion along the edges
and faces of micro-structures further advances the mechanical per-
formance of the infills. This sets new standards in mesh-based
structural design and aims to inspire future work in the design and
manufacturing of lightweight 3D objects.
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Appendix A: Micro-Structure Design

The edge vertices for the micro-structure are linearly interpolated
for every edge as

[
v′0,v

′
1
]T

= Te [v0,v1]
T using the weight matrix

Te =

[
a b
b a

]
with

a
b
=
=

1− τ,
τ. (9)

The four vertices of each face are computed as
[
v′0,v

′
1,v

′
2,v

′
3
]T

=

T f [v0,v1,v2,v3]
T , using bilinear weights with the matrix

T f =




a b c b
b a b c
c b a b
b c b a


 with

a
b
c

=
=
=

τ2−2τ+1,
τ− τ2,

τ2.

(10)

Inner micro-structure vertices within the cell compute as[
v′0,v

′
1,v

′
2,v

′
3,v

′
4,v

′
5,v

′
6,v

′
7
]T

= Tc [v0,v1,v2,v3,v4,v5,v6,v7]
T , us-

ing trilinear weights in form of the matrix

Tc =




a b b b c c c d
b a c c b b d c
b c a c b d b c
b c c a d b b c
c b b d a c c b
c b d b c a c b
c d b b c c a b
d c c c b b b a




with

a
b
c
d

=
=
=
=

−(τ−1)3,

(τ−1)2τ,
τ2− τ3,

τ3.

(11)

0

1

2
3

4
5

6

7
The weighting matrix Tc thereby corre-
sponds to the vertices of a hexahedron or-
dered as shown on the right. τs can be deter-
mined individually per vertex or averaged
per edge, face or cell element, respectively.

Appendix B: Cell Volume Fraction

The volume fraction α for a hexahedral cell with a given parameter
τ is formulated in Equation (12) as a polynomial for the beam-case.
This follows the micro-structure elements introduced in Figure 7
with small cubes at the 8 corners of the initial cell and elongated
beams at the 12 edges, respectively.

αb
H(τ) = 8τ3 +12(1−2τ)τ2

= 12τ2−16τ3
(12)

As formulated in Equation (13), the consumed volume of the
walled micro-structure further includes 6 extruded faces.

αw
H(τ) = 8τ3 +12(1−2τ)τ2 +6(1−2τ)2τ

= (2τ−1)3 +1
(13)

Whereas the wall function αw
H(τ) is a 1-to-1 mapping and has an

inverse, the beam function αb
H(τ) has no real-valued inverse.

α̂b
H(τ) =

1− cos(2πτ)
2

(14)

However, for the domain [0, 1
2 ] and range [0,1], the polynomial

αb
H can be approximated with the simple term formulated in Equa-

tion (14). This trigonometric approximation has a maximum error
of ∼ 1% but is exact in α = 0, 1

2 and 1. Its trivial inverse exists and
is formulated in Equation (7).
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