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Figure 1: Visualizations of the individual stages and processes in our geometric abstraction pipeline, exemplified on a portrait photograph.
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Abstract

Our work extends common pixelization techniques, enabling novel geometric pop-art stylization. We employ dedicated feature
analysis to autonomously extract facial features, ensuring the best recognizability of persons and facial expressions in portraits.
Additionally, our method includes automated content-related detail level extraction for scenic image content. Based on these
detail levels, a hierarchical structure sets the basis for non-uniform pixelization. A joint optimization routine computes a reduced
color palette alongside the coarse superpixel segmentation. We propose an adapted modification to common superpixel methods
to handle non-uniform sized cells, maintaining a comparable level of detail while allowing for a coarser, more pixelated look.
Additionally, this intermediate result serves as the basis for our geometric abstraction by eventually clustering polygonal
shapes based on the pixelization. Colors and shapes are derived from the source image to capture and reproduce the most
essential details for recognizable characters and facial expressions. We document the theoretical details of our method, discuss
and elaborate the possible extensions. Provided results of the intermediate pixelization are compared qualitatively to related
methods. Compared to other stylization methods, our resulting geometric abstractions are generated automatically, preserving
a high level of relevant details from the source image. Unlike simple filtering techniques or learning-based stylization methods,
our approach allows for the incorporation of user input to highlight features. Furthermore, our method stays true to the original
image and results in scale-independent vector graphics, rendering it a valuable tool for artists and graphic designers.

CCS Concepts « Computing methodologies — Image processing; Non-photorealistic rendering; Computational photography,

1. Introduction High-resolution displays with very high pixel densities have be-

Over the past decade, machine learning methodologies have sub- come prevalent, surpassing the perceptual capabilities of the hu-

stantially transformed the landscape of image generation and
stylization [JYF*19]. Dedicated convolutional neural networks
(CNNs) trained for specific tasks have proven instrumental in
addressing numerous challenges encountered in computer vision
tasks. However, the opaque nature of common image generation ap-
proaches presents challenges, as manual adjustments often involve
iterating through various prompts in a trial-and-error manner, rely-
ing on chance for satisfactory outcomes. This inherent randomness
complicates and obscures the artistic process. Particularly for artists
with a well-defined creative vision, a controllable and deterministic
abstraction process is a fundamental requirement.
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man visual system to discern individual pixels. In contrast, during
the early stage of the home computer market, displays possessed
limited capabilities, typically offering resolutions of less than 0.1
megapixels and a restricted color palette. The aesthetic appeal of
graphics and games from this era, characterized by distinct con-
straints, inspired pixel-artists to incorporate these limitations into
their artwork, requiring skillful abstraction techniques. Our modi-
fication of the utilized superpixel method introduces further coars-
ening to our intermediate pixelization result, allowing for a compa-
rable level of detail as other methods while further emphasizing the
block abstraction style.
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Figure 2: Schematic steps of our pipeline, visualized in Figure 1. Automated feature analysis serves as input for the quadtree decomposition.
This initializes the joint superpixel and color palette iteration. Abstract geometric results are based on the non-uniformly sized superpixels.

While conventional pixelization methods typically focus on reduc-
ing the size of the input image to low resolution, we aim to relax
this constraint in order to facilitate greater artistic flexibility. Our
aim is to decrease resolution primarily in homogeneously colored
regions, such as blurry backgrounds in portrait images or larger
smooth areas in scenic photographs, while preserving details in
crucial regions to ensure the recognizability of faces and objects.
The objective of our paper is to advance existing techniques by
combining them for producing refined artistic abstractions, surpass-
ing mere pixelization. Therefore, we extend superpixels [ASS*10]
to a non-uniform sized grid and allow both autonomous or user-
guided methodologies for their generation. Furthermore, our gener-
ated pixelated outcomes serve as a input for approaching vectorized
stylizations of Wedha's Pop Art Portrait (WPAP) style [Ras]. This
particular art style adeptly captures details of varying sizes through
geometric abstraction using shape-constrained polygons. Notably,
these polygons can be colored with hues unrelated to the original
image yet still yield recognizable and visually appealing abstrac-
tions. In our approach we utilized the non-uniform superpixel lay-
out as basis for Two-Colored-Pixel (TCP) rendering. A TCP is char-
acterized by a straight line dividing the pixel into two halves, each
assigned a distinct color. This approach combines the constrained
color palette and the superpixel clustering, enabling the creation
of coarse abstract polygonal shapes faithfully recreating the input
images appeal and fine details.

2. Related Work

Faithfully vectorizing low-resolution images is an ongoing chal-
lenge, with existing geometric- [KL11] and learning-based ap-
proaches [RGLM21]. Similarly, generating stylized pixel art char-
acters or sprites with a distinctive retro video game aesthetic from
given input presents an open non-trivial task. Works by Gerstner et
al. [GDA* 12, GDA™*13] introduced techniques, to create (semi- or
fully-automated) very low-resolution images with a restricted color
palette based on a given input image, aiming to generate abstrac-
tions resembling the work of pixel-artists. This is achieved by com-
bining two iterative converging procedures: Simple Linear Iterative
Clustering (SLIC) Superpixels [ASS™10] group multiple pixels in a
5-dimensional feature space (CIELAB color and XY position), fa-
cilitating significant reduction in image resolution. A reduced color
palette is determined using Mass Constrained Deterministic An-
nealing (MCDA) [Ros98], which implements a cool-down process
starting with one mean-sample and high initialization-energy. In a
subsequent publication, they expanded their approach to incorpo-
rate user constraints, allowing users to define weights for specific
image regions through an importance map. These weights directly
influence the MCDA, while superpixel clustering is indirectly af-
fected by the available colors from the palette.

As extension of the SLIC concept, we introduce non-uniformly
sized superpixels. These superpixels of varying sizes subdivide
the initial image based on attention-guided level of detail maps,
manually specified or automatically extracted from the input im-
age. To determine the appropriate level of detail for general im-
age content, we employ a method inspired by the work of Itti et
al. [IKN98], utilizing multi-color channel feature analysis within
a Gaussian-pyramid framework. For portraits, we employ a dedi-
cated face detection algorithm proposed by Kazemi and Sullivan
[KS14, SAT*16, Kin09] to infer a detail map from detected facial
landmarks. A specialized quadtree algorithm utilizes the level of
detail map to cluster the image and extract starting positions for
the superpixel relaxation. This enables the creation of larger super-
pixels in homogeneous image regions to achieve greater abstrac-
tion, while preserving higher resolution in important regions such
as sharp image features or facial details.

While recent learning-based methodologies concentrate on pixeliz-
ing game scenes and generating sprites [HWH" 18, WCZ*22], de-
terministic methods for image stylization of this nature also rely
on superpixels. For instance, the SLIC algorithm is commonly uti-
lized for reducing color palettes to achieve a posterization effect
[CSG21] or for portrait pixelization [SW21].

3. Method

The following elaborates details of our proposed pipeline, depicted
in Figure 2. First, level-of-detail maps are extracted from the in-
put or specified manually, followed by quadtree partitioning to
facilitate the generation of non-uniformly sized superpixels. The
combined annealing processes of converging superpixels and the
restricted color palette forms the basis for geometric abstraction.
TCPs further subdivide the superpixels and create coarse geomet-
ric abstractions using polygonal shapes. Visualizations of interim
pipeline steps are presented in Figure 1, illustrating automatically
generated detail maps, pixelization and resulting stylizations.

3.1. God is in the Details

A key feature in our abstraction process is the preservation of de-
tails from the original image, including sharp edges depicting ob-
jects or facial features in portrait photographs. To guide this ab-
straction with multiple levels of detail, we integrate straightforward
grayscale importance maps. These maps, which can be either user-
specified or generated automatically, serve as input for a quadtree
decomposition of the input image. Centers of the quadtree cells
provide the initial positions for the superpixels used in the next
stage. For automatically generated detail maps, we provide a gen-
eral method for capturing details in scenic images or a specialized

© 2024 The Authors.
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method for portraits focused on faces. To offer more artistic control,
detail maps can be incorporated from user-defined input as well.

General Feature Analysis Our method for extracting importance
maps from scenic input images is derived from the bottom-up
saliency-analysis approach of Itti et al. [IKN98]. Therein, a Gaus-
sian pyramid of the input image is generated up to a suitable level.
Subsequently, separated XY-Sobel filters are applied to the color
channels of each level, and the combined Euclidean magnitude of
all (rescaled) levels is accumulated in one map and normalized. A
simple quantization process discretizes the resulting grayscale map
into the desired number of discrete detail levels. Figure 3 shows the
detail level analyses with the level-of-detail map in gray and the
resulting quadtree level with shades of blue. Resulting superpixels
of difference sizes (after the relaxation) are visualized on the right.

H N - ‘- 1 -
Figure 3: A scenic mountain image, source and result in Figure 10.
Left: saliency map extracted from the Gaussian pyramid quantized
to 4 levels, then subdivided with a quadtree visualized in blue.
Right: superpixels of different sizes after the relaxation process.

Portrait Landmarks The importance maps provided by the mul-
tiscale feature extraction prove suitable for scenic images as it ef-
fectively highlights sharp features and focuses on high-frequency
details throughout the image. However, for artistic portrait abstrac-
tion, only specific details are relevant, primarily the facial features
such as the eyes, nose, mouth, and optionally the jawline. To ad-
dress this, we employ the simple 68-landmark facial feature ex-
traction technique proposed by Kazemi et al. [KS14] to generate
dedicated importance maps tailored for portrait image input. These
68 feature points are categorized into groups representing the out-
line of the mouth and nose, the left and right eyes and eyebrows,
and the estimated jawline. The importance map is then generated
by simply tracing the points of the individual landmark groups.

For certain portrait inputs, facial details alone can sufficiently cap-
ture the essence of the image. This is facilitated by the quadtree
subdivision approach, which gradually decreases cell sizes from
coarser to finer details, ensuring intermediate regions are repre-
sented with reasonable detail. However, as illustrated in Figure 4,
if the face region covers only a small region of the image, large
portions may remain at very low quadtree levels, resulting in ex-
cessively coarse abstractions. To address this, we can incorporate
the basic detail map that is quantized to only k — 1 levels and por-
trait features are then assigned the highest level. This encourages
more quadtree subdivisions in non-facial regions, enabling to cap-
ture more details in clothing or backgrounds as well.

Quadtree Decomposition The quadtree decomposition subdi-
vides the image space based on the introduces level-of-detail maps,
resulting in smaller cells in regions of higher detail and larger cells
in coarser image regions. Centers of these quadtree cells serve as

© 2024 The Authors.
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Figure 4: Left: Extracted portrait landmarks (top) are combined
(bottom) with the saliency map (gray) to guide the quadtree decom-
position (blue). This ensures expressive facial features while still
capturing essential details in clothing or background. Middle and
right, respectively, show the pixelization and geometric stylization.

starting positions for the superpixels used in the upcoming step.
The root level of the quadtree is initialized as a regular grid with
equally sized cells. The initial grid resolution is set very coarse
with 8 x 8 or 16 x 16 cells and specifies the maximum size of the
coarsest superpixels. Each cell then examines all its pixels in the
quantized detail-level map. If the cell contains integer values higher
than its own level, it is a split into four smaller cells. This process
continues recursively until neither cell requires further splits or un-
til a maximum detail level is reached. For included results we used
a maximum recursion depth of 3 to four levels. Figure 3 illustrates
how smaller quadtree cells approach edges highlighted in the detail
map, enabling the creation of detail-maintaining abstractions.

3.2. Non-Uniform Pixelization

SLIC superpixels are favored for pixelated image stylization
[SW21] over simple downsampling because they facilitate cluster-
ing based on both position and color in a 5-dimensional relaxation
process. However, for our specific application, we need to adapt
the formulation of the distance metrics used for the clustering to
accommodate our non-uniformly sized superpixels.

Size Adaptive Clustering The principle of the SLIC clustering
method proposed by Achanta et al. [ASS*10] closely resembles a
simple k-Means iteration or a Lloyd relaxation on a Voronoi dia-
gram. In this method, the image space is treated as a continuous
space, sampled on the discrete pixel grid. For initialization, a fixed
number of k superpixel centers is distributed over the input im-
age either on a regular grid or, in our case, based on the quadtree
cell centers. Subsequently, the following two steps are iterated until
convergence, i.e., no further movement in an iteration:

e For each real image pixel, the closest superpixel center is lo-
cated, and the pixel is labeled accordingly.

e The superpixel centers are repositioned to the centroid of all pix-
els labeled with their respective ID.
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A superpixel C; = [L;,a;,b;,x;, yi]T is a vector of five dimensions,
featuring three color values in the Lab space and two spatial xy
dimensions. To fine-tune characteristics of the clustering and re-
laxation process and compensate for the different scaling of the
color space and image dimensions, it’s necessary to assign differ-
ent weights to the distinct components. The metric specifying the
distance between a superpixel i and image pixel j formulates as
D(i. ) = dya i) + G (i, ) (M

with separated Euclidean norms
drapinj) = \J(Ly = L)+ (aj = ai)* + (b= bi)2, @
i ) =\ (5 =3+ (3 = i) 3

Achanta et al. propose the weighting in Equation (1) using S = ﬁ ,
where 7 is the number of pixels in the input image, k the number of
superpixels and m can be fine-tuned but was set to 1 for included
results. As an example, Figure 5 illustrates the effects of differ-
ent weightings: with a higher weight on color, superpixels become
more fuzzy (middle), and with more weight on spatial distance,
they are more compact (right).

E E
Figure 5: Comparing the effect of weighting from Equation (1) with
a detail of the source image on the left. Center: Color outweighs

spatial distance and superpixels become more fuzzy. Right: Spatial
distance outweighs color and superpixels are more compact.

The original SLIC metric formulated in Equation (1) assumes
equally sized superpixels. However, as illustrated in Figure 6, the
standard Euclidean L; norm as a measure for spatial distance intro-
duces a bias that deforms the superpixel shape, even in this perfect
regular arrangement. While neighboring superpixels of the same
size are unaffected, adjacent superpixels of different sizes are sep-
arated by curved cell boundaries. To circumvent this effect, we uti-
lize the Loo norm and replace the spatial metric with

day(i, j) = max (|xj — x|, [yj — vil) - @)

Figure 6: With the L, norm, su-

perpixels of difference size form

rounded shapes, even in regu-

lar configurations. The Loc norm
L, Loo counteracts this behavior.

3.3. Constrained Color Palette

To constrain the color palette during the abstraction process, we
employ the Mass Constrained Deterministic Annealing (MCDA)
algorithm [Ros98], which operates based in the three-dimensional
color space of the input image. The algorithm aims to determine k

clusters representing the final color palette. Unlike k-means, where
all clusters are present from the start, MCDA initializes with only
one cluster positioned at the mean position of all data points. Sam-
ples are subsequently assigned to their closest cluster center, which
is repositioned in an iterative relaxation procedure. The system’s
global energy is initialized as twice the total variance over all sam-
ples, and the energy is decreased by a factor o < 1 with each it-
eration. While Gerstner et al. use o = 0.7 to decrease the system’s
energy, we observed that a slower convergence rate yields improved
results, thus use o = 0.9. If a cluster’s largest eigenvalue exceeds
the system’s energy, it undergoes a split. In the original algorithm,
this split is implemented as a small directed random jitter applied to
each new cluster center. However, we found that using the clusters
largest eigenvector as offsets in both positive and negative direc-
tions facilitates slightly faster convergence. The number of palette
colors k can be user-specified, and by default, the annealing process
continues until the color palette has converged. This stopping cri-
terion can be implemented as the distance between palette colors,
before and after each iteration, falling below a reasonably small
threshold [GDA*12]. However, in rare edge cases, some images
may cause palette oscillation. While this could be mitigated by in-
troducing small amounts of noise to the palette, we chose not to
introduce randomness to the process. Instead, we terminate an os-
cillating iteration after reaching a maximum number of steps.

3.4. Combined Iteration

A crucial aspect of the pixelation approach lies in the synergy re-
sulting from the combined iterations of SLIC and MCDA. There-
fore the initial SLIC iteration is extended by the two MCDA steps:
Each iteration cycle involves the assignment of pixels and relax-
ation of superpixel clusters (SLIC), as well as the association, re-
finement, and expansion steps of the color palette (MCDA). The
system iterates the following steps until palette convergence is
achieved, i.e., when the specified number of colors is reached and
the system energy falls below a certain threshold (we chose 1):

i. Label each pixel with the ID of the closest superpixel.
ii. Reposition superpixels to the geometric center of all pixels,
labeled with their respective ID.
iii. Probabilistically associate color samples from the input image
with superpixel colors and refine the matching.
iv. Lower the palette’s energy, eventually leading to palette expan-
sion if colors are split, and assign superpixels to new colors.

Extensions Additional improvements on the color palette can be
achieved through bilateral smoothing, which aims to strengthen the
color relation between directly adjacent superpixels. Therefore, the
pixelization is assembled using the superpixels in their designated
places, filtered bilaterally, and then resampled by the superpixels to
store the filtered color. This operation takes place between steps ii.
and iii. so that the palette refinement starts on smoothed colors.

Furthermore, in step iii., importance maps may be incorporated to
weigh the influence of input pixels on the color palette. However,
these importance maps are not be confused with the detail-level
maps used in Section 3.1 to guide the quadtree decomposition.

Positional Constraints Our formulation, utilizing the Loo norm
for superpixel shapes, resembles the idea of mosaic stylization by

© 2024 The Authors.
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Hausner [HauO1]. However, unlike mosaic tiles, superpixels should
not float around uncontrollably as during a Lloyd relaxation but
should be bound to specific destinations. Furthermore, to maintain a
structured quad-like grid and ensure that superpixels remain some-
what close to their origin during the SLIC relaxation, additional
constraints are necessary. Therefore, one can employ simple ex-
plicit Laplace smoothing [GDA*12], which formulates positional
constraints relative to the mean position of the four direct super-
pixel neighbors. However, concerning the non-uniform superpixels
introduced in Section 3.2, this quadrilateral grid neighborhood is
not trivially given. Instead we use each superpixel’s own initial po-
sition xyCO as the destination of the smoothing force: After a relax-
ation step, each superpixels spacial xy component is updated as

wC = (1= ) oy CF + a1 )

Extending this approach further also allows for individual o; val-
ues for each superpixel, dependent on a normalized color dis-
tance to its origin. Thus, we formulate smoothing weights as o; =
drap (LabCf‘, LabC? ). This has the effect that if a superpixel is close
to a strong gradient and gets pushed over, the color distance and
therefore the force pulling it back to its initial position will increase.
This allows superpixels in homogeneously colored regions more
roaming space during relaxation but keeps superpixels in high-
frequency areas tighter bound to their designated position.

3.5. Geometric Stylization

The result of the modified pixelization may serve as a basis for
further abstraction and stylization techniques. This obviously con-
trasts the initial purpose of classical pixelization, but provides a
greater degree of artistic flexibility.

Two-Colored Pixels In general, a TCP is defined as a square pixel
intersected by a line at two points, which is rendered with two dif-
ferent colors on both sides of the line [PK10]. We utilize this con-
cept as an extended rendering extension for our superpixel results.
Therefore, each superpixel is simply replaced by a TCP, thus cov-
ers multiple pixels of the input image. The separating line is de-
termined based on the area of the source image, covered by the
superpixel to be replaced by a TCP. However, for our application
we limit the possible colors of the TCPs to the constrained color
palette extracted in the prior pixelization.

With 7 being the input image containing all pixels p, a TCP searches
for the optimal line L by minimizing the energy

E(L) =Y ‘1,,—c“+ y ‘Ip—c+’ (6)

L(p)<0 L(p)>0

where L(p) states on which side of the line pixel p is. The averaged
pixel colors from either side of the line are denoted as ¢~ and ¢,
respectively, but will be eventually replaced by palette colors.

The number of possible line configurations depends on the number
of real image pixels, covered by a superpixel, i.e., corresponding
TCP. With our superpixels being derived from a quadtree, the num-
ber of pixels covered by a superpixel increases by powers of 2 per
level. However, feasible computation can be maintained, using the
hierarchical approach proposed by Pavic et al. [PK10].

© 2024 The Authors.
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The final geometric abstraction is constructed from TCPs of dif-
ferent sizes, constrained to the color palette. Consequently, same-
colored portions of adjacent TCPs form coarse polygons that rep-
resent semantic details of the input image both in shape and color.

Output Details As the coarse abstraction ultimately comprises
only polygonal shapes, the output is generated in vector graphic
format and does not require further rasterization of the TCPs. The
color palette is the result of clustering, thus may be subject to some
averaging bias. To compensate for this and give the results more of
a pop-art appeal, we slightly increase the lightness and saturation
of the extracted palette for the export. For creating characteristic
stylizations of black and white portraits, one could also apply user-
specified palette colors or create a new one by randomizing the hue
values and only maintaining the lightness of the colors. Figure 8
includes an example generated from a black and white input image
with randomized color palette. As the polygons in the output are
simple 2D coordinates, the method is suitable for stereo-consistent
stylization methods [BSGL15] that remap the monoscopic points
to a stereo image pair.

4. Results and Discussion

This section features comparisons of our intermediate pixelation
results to other pure pixelization methods. Furthermore, we quali-
tatively evaluate the results of our geometric stylization approach,
also in comparison to results of diffusion based image generation.

Input Other Method Our Pixelization Our Stylization
Figure 7: A comparison to related pixelization methods by Gerst-
ner et al. [GDA™13] (top two rows), Shang et al. [SW21] (bottom
two rows) to our pixelization and final abstraction results.
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4.1. Pixelization Results

The SLIC-based pixelization core of our method shares similari-
ties with those proposed by Gerstner et al. [GDA*12, GDA*13]
and Shang et al. [SW21]. A key distinction in our method, how-
ever, is the hierarchical multiscale approach with differently sized
superpixels. Even when approaching similar resolutions as com-
pared methods at fine details in our images, larger homogeneous re-
gions are represented with larger superpixels, thus realizing a more
blocky look and coarser abstraction. This allows us to maintain and
represent a similar level of detail as related works but introduces a
much coarser look of the pixel-style abstraction in general. Exem-
plary comparisons with results from related works are included in
Figure 7, also featuring our intermediate pixelization results. This
direct comparison highlights the coarser look of our results; for ex-
ample, in the turban in the top row image or the hat in the bot-
tom row, which are represented with a much coarser resolution,
yet are still recognizable. Nonetheless, the quadtree subdivision,
focused on extracted facial features, allows us to spend more and
smaller pixels in facial regions like eyes, nose, and mouth, eventu-
ally matching the resolution of compared results. This dedication
to detail also impacts performance, as we have to handle way fewer
superpixels during the relaxation. For example, the bottom row re-
sult of Shang et al. includes 76 x 76 = 5776 superpixels, while ours
only has 1621 superpixels, as the larger ones simply cover more
space. Rendering the coarse pixelization using our proposed geo-
metric abstraction with polygonal shapes allows to mitigate effects
like staircasing and regaining more fine image details in general.

4.2. Geometric Abstraction

In addition to pixelization, which serves as an intermediate result,
our focus lies on the stylization of images using abstract geometric
polygons. The following presents results of this method applied to
scenic image content as well as portrait images.

Portrait Image Stylization As stated with the title, the focus of
our method lies in the stylization of portrait images. The dedicated
use of facial feature extraction allows us to prioritize faces in the
segmentation with the highest detail level. Figure 8 lists results of
our portrait stylization alongside the source images.

Most noticeable here is how well facial features are preserved, ex-
pressions, emotions as well as characters are still recognizable. This
is enabled by the smaller non-uniform superpixel sizes, as these al-
low more detail in highlighted feature regions. Furthermore, the
TCP rendering recovers more shading details and sharp gradients
from the pixelated base image. The reduced color palette is sam-
pled from the source image, thus staying true to the input, which
allows us to transport the actual look, feeling, or mood present in
the source image to the abstraction.

Scenic Content The images in Figure 10 demonstrate the appli-
cability of the abstraction method to images without faces. The ab-
straction is then guided solely by sharp gradients and prominent
shape contours, extracted by the Gaussian pyramid. Nevertheless,
the initial quadtree segmentation again facilitates the abstraction
of larger homogeneous regions while still maintaining structure in
fine and small details. For example, the blurry background in the

Figure 8: Due to the dedicated facial feature extraction before the
abstraction, our method applies well to portrait image content, re-
gardless of whether it’s photographed or painted. Enhanced colors
give the geometric abstraction more pop-art appeal, while a ran-
domized palette can create iconic stylizations from black and white
images, as shown in the bottom example.

© 2024 The Authors.
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upper image or the sky in the lower image are represented by large
coherent polygons, while details of the flowers, butterfly wings, or
shadings of the mountainside are reproduced with finer shapes.

Figure 10: Examples of non-portrait content are solely based on
detail-level-maps exacted from the input images, and capturing fine
details while coarsening homogeneous regions.

Comparison to Diffusion Models A key feature of diffusion
models is their ability for large-scale generalization and applica-
bility to reproduced a vast amount of different styles. However,
this also makes it difficult to pin them down to an exact artistic
vision and may entail a lengthy trial and error process with exper-
imental configurations of prompts and pretrained models. Never-
theless, we let an experienced user try to recreate the geometric
abstraction style for a comparison with our results, all featured in
Figure 9. Three different base models were used: a simple basic
model, one for stylized portraits (DynaVision), and one specialized
on cinematic characters (Juggernaut), further a specially trained
WPAP LoRA and enhancement styles SAI Lowpoly and Minimal-
ism. The picked images are the results of around 30 different ex-
perimental model and prompt configurations to produce satisfac-
tory results, roughly resembling the anticipated style. Eventually,
all three results were produced using the prompt: wpap style, geo-
metric abstraction, polygon shapes, no color, grayscale, black and
white. The diffusion process is also initialized with image features
from the source image, extracted with a multiresolution Canny edge

filter. This allows to guide posture and image arrangement. Addi-
tionally, a specialized face-swapping feature was included, which
should reproduce the face as true to character as possible.

Arguably, all three models produce visually striking images, clearly
based on the given input image. However, the level of abstraction
varies quite drastically: from lots of colorful polygons in the first
model, to coarse shapes in the second one (strictly omitting the
face), to only reduced gray tones and just a few shapes in the back-
ground. Further, dependent on the used diffusion model, faces are
always biased by the most prominently featured style in their train-
ing data. So, none of the diffusion results actually generates a face
recognizable as Johnny Cash. Neither did one of them pick up his
sad facial expression nor roughly the correct age, and all of them
even changed the direction he is looking at. Another essential fea-
ture for this particular image, depicting the man in black, is the
grayscale color palette. Although explicitly stated in various for-
mulations in the prompt, only one instance managed to actually
produce a grayscale image while the others feature various bright
colors, probably due to the strong influence in the trained models.

4.3. Implementation and Performance

Many of the employed algorithms are primed for parallelization
with a proper GPU implementation to enhance overall perfor-
mance. For instance, the SLIC algorithm is realized using a z-
Buffer approach, which is trivially well-suited for hardware accel-
eration [HIKL*99]. However, even with our simple Python imple-
mentation, the iteration routines usually converge within seconds
for megapixel-sized input images. Preceding steps (Section 3.1),
such as hierarchical feature analysis, face landmark extraction, or
quadtree segmentation, finish instantly. The generation of TCPs re-
quires some additional computational effort due to the brute-force
nature of finding the optimal separator line configurations. How-
ever, as TCPs are independent of each other, they can be com-
puted in parallel on a multithreaded CPU in a matter of seconds
as well. For example, our implementation generated the result in
Figure 9 (right) in a total of 90 seconds on a 4 GHz CPU. For com-
parison, the shown diffusion results were produced on a 1080Ti
GPU in 244, 514, and 524 seconds, respectively. The implementa-
tion of our method to reproduce the shown results is available at
https://github.com/dbukenberger/GeometricPortraitStylization.

" mmomeBase Model

Stylization Model

Cinematic Model

Figure 9: Comparing results from image diffusion models and our geometric style (right). The diffusion process is also guided by essential
features from the input, thus reproduces posture and image arrangement. Faces and colors are, however, heavily biased from predominant
styles in the model training data. Diffusion results are pixel images of limited resolution whereas ours is exported as vector graphic.
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4.4. Further Application

Results of our geometric abstraction are vector graphics in SVG
format, easily renderable in all common web browsers. Thus, they
may serve as a simple inverse steganography method: For instance,
when our version of a person’s portrait is included on a website, the
portrayed person remains easily recognizable to humans, but the
image itself is not trivially parseable by automated web crawlers,
assembling large-scale face recognition databases. These crawlers
would first need to rasterize the vector graphic to determine if it
contains a person at all, adding a layer of complexity that could help
protect the identity of individuals depicted in the images. There-
fore, it might be useful to recreate the input image more accurately
and with less abstraction. The image on the right of Figure 11 pro-
vides an example, offering a wider color palette and no hierarchical
detail reduction, thus creating a more faithful representation of the
input image. Due to the increased resolution, the unoptimized SVG
file on the right has about 70 % of the filesize of the lossless input
PNG. The result with coarser abstraction on the left has about 70 %
of the filesize compared to a compressed JPG version.

i 78 N

Figure 11: The coarser abstraction on the left uses two hierarch
levels and 16 colors, the right one has no hierarchy and 32 colors.
Both abstractions have the same base resolution of 56 X 72 pixels.

5. Conclusion

In this work, we introduce a novel method for geometric styliza-
tion of portrait images that also generalizes well for scenic im-
age content. As an intermediate step, we extend common pixeliza-
tion methods and adapt them to feature non-uniform superpixels
by exchanging the L, norm for the Lo norm as the spatial dis-
tance metric. Our method utilizes the coarse pixelated result and,
in combination with a selectively relaxed color palette for poster-
ization, uses TCPs as the rendering method. The hierarchical seg-
mentation, based on image features, initializes the superpixels and
allows for larger geometric abstraction in homogeneous regions
while maintaining fine shapes in small details. Dedicated facial
landmark detection enriches the level-of-detail map for a strong
emphasis on faithful face abstraction, allowing for recognizable
characters in portraits with convincing facial expressions and emo-
tions. In the evaluation, we compared our pixelization results to
related methods, demonstrating how our non-uniform pixelization
can produce much coarser-looking abstractions while reproducing
detail at the same level as competing methods. In a comparison
with popular diffusion-based image generation methods, we high-
lighted the difficulties in such approaches to produce images in a
given style while maintaining character details from a given in-
put. As our method utilizes non-uniform and larger superpixels,
much fewer of them are required in the computation, thus facilitate
faster converging computations. Besides rasterized pixel graphics,
our pipeline also naively supports output as vector data suitable for

plots, large-scale prints, as basis for further manual stylization or
inverse steganography method hiding portraits from web crawlers.
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